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What is a curve?

Let / € R be an open interval, not necessarily bounded. A function
a: ] — R3isacurve if it is a C> map, i.e., if it has derivatives of

all orders on /.
We say that « is a plane curve if there exists a plane P C R3 such

that o(/) C P.
A space curve is a curve whose points do not necessarily all lie on a

single plane.

Figure 1: A plane curve with a self-intersection



Arc Length

One may seek to study the length of the trace of o over some
compact interval [a, b] C . A natural approach is to define a
partition P ={a=1ty < t; < ... < t, = b} of [a, b] and
approximate the length of «([a, b]) with the sum

> la(t) = a(ti-)|.
i=1
It can be shown that if |P| = maxi<i<p{|ti — ti—1|}, then

b
im :/ o/ (8)dt,

|P|—0

which suggests the definition of fab |/ (t)|dt as the length of «
from a to b.



Parametrization by Arc Length

We say that « is a regular curve if o/(t) # 0 for each t € [, i.e., if
the tangent line of « is well-defined at each of its points.
For any ty € I, we can define the arc length function from tg, given

by .
S(t):/t |/ (u)]du.

We say that « is parametrized by arc length (p.b.a.l) if |&/(t)| =1
for each t € I, so that S(t) = t — ty. . Since S'(t) = |/(t)], the
inverse function theorem tells us that if « is regular, then S is
increasing and open. Hence if J = S(/), then S:/ — Jisa
diffeomorphism between open intervals.



Let 8 : J — R3 be the reparametrization of a given by
B =caoS 1. It follows that

so that |3'(s)| = 1 for each s € J. Therefore, any regular curve
admits a reparametrization by arc length.

Let o : | — R? be a curve p.b.a.l, and let the tangent unit vector
o/(s) be denoted by T(s). Let the normal vector of « at s be given
by N(s) = JT(s), where J is the linear transformation
corresponding to a 90-degree counter-clockwise rotation. From the
equalities | T(s)|? = |[N(s)|?> = 1 and (T (s), N(s)) = 0, we can
conclude, by taking derivatives, that

(T'(s), T(s)) = (N'(s), N(s)) = (T'(s), N(s)) + (T (s), N'(s)) = 0.



Observe that T'(s) has the same direction as N(s), so that, for
each s € I, we have that T'(s) = k(s)N(s) for some k(s) € R.
The number k(s) is called the curvature of v at s.

We have constructed, for each s € /, a positively-oriented
orthonormal basis { T(s), N(s)} for R2. This pair of vectors is
called the oriented Frenet dihedron of o at s. The equations

T'(s) = k(s)N(s) and N'(s) = —k(s)T(s)

are called the Frenet equations of the curve .

Figure 2: The evolution of the Frenet dihedrons unveil the geometrical
features of the curve



Fundamental Theorem of the Local Theory of Plane Curves

Let ko : | — R be a differentiable function defined on an open
interval /| C R. Then, there exists a plane curve o : | — R? p.b.a.l.
such that k,(s) = ko(s) for every s € I, where k, is the curvature
function of . Moreover, if 3 : | — R? is another plane curve
p.b.a.l. with kg(s) = ko(s), for all s € /, then there exists a direct
rigid motion M : R?> — R? such that = Mo a.



Space curves

We can, as we did for plane curves, associate a positively oriented,
orthonormal basis of R3 to each point of a space curve.
Let o : | — R3 be a curve p.b.a.l and T(s) = o/(s). Since
| T(s)|? = 1 for each s € I, it follows that (T'(s), T(s)) = 0 for
each s € /. We now define the curvature k of o at s by
k(s) = |T'(s)|. Unlike with plane curves, the definition forces the
curvature to be non-negative at each s € /.
Assume that k is strictly positive. Then one may consider the
vector (s) .
!
M= e ke T

From previous reasoning, we see that (T(s), N(s)) = 0 for each

s € 1. Hence, in order to construct our orthonormal basis, it suffices
to define a third vector B(s) = T(s) x N(s), where x denotes the
vector product of Euclidean three-space. We call this vector the
binormal vector of the curve « at s.




Torsion

From the definition of B, we can conclude that
B(s) = T'(s) x N(s) + T(s) x N'(s) = T(s) x N'(s)
since T'(s) and N(s) have the same direction. Hence
(B'(s), T(s)) = det(T(s), N'(s), T(s)) = 0.

Furthermore, |B(s)|?> = 1, so that (B/(s), B(s)) = 0. This tells us
that B’(s) has no components in the directions of T(s) or B(s). It
follows that

B'(s) = 7(s)N(s),
with 7(s) € R for each s € I. The number 7(s) is called the torsion
of the curve a at s.



Finally, we study the derivative of the normal vector: From the

equalities |[N(s)[2 = 1, (N(s), T(s)) =0, and (N(s), B(s)) =0, it

follows that
(N'(s),N(s)) =0

(N'(s), T(s)) = =(N(s), T'(s)) = —k(
(N'(s), B(s)) = —(N(s), B'(s)) = —7(

S

),
),

S

so that
N'(s) = —k(s)T(s) — 7(s)B(s)

for each s € I. The three equations we have deduced,

T'(s) = k(s)N

IN(
N'(s) = —k(s)T(s) — 7(s)B(s),
B'(s) = 7(s)N(s)

S

),
)

are the Serret-Frenet equations of the curve a.



Fundamental Theorem of Local Theory of Space Curves

Let / C R be an open interval and let kg, 79 : | — R be two
differentiable functions with ko(s) > 0, for each s € /. Then there
exists a curve o : | — R3 p.b.a.l. such that k.(s) = ko(s) and
Ta(s) = 70(s) for each s € I, where k,, and 7, are the curvature
and torsion functions of a.. Furthermore, « is unique up to a direct
rigid motion of Euclidean space R3.

Figure 3: The triplet of vectors associated with each point s of the curve
is called the Frenet trihedron of « at s.
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