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What is a curve?

Let I ⊂ R be an open interval, not necessarily bounded. A function
α : I → R3 is a curve if it is a C∞ map, i.e., if it has derivatives of
all orders on I .
We say that α is a plane curve if there exists a plane P ⊂ R3 such
that α(I ) ⊂ P .
A space curve is a curve whose points do not necessarily all lie on a
single plane.

Figure 1: A plane curve with a self-intersection



Arc Length

One may seek to study the length of the trace of α over some
compact interval [a, b] ⊂ I . A natural approach is to define a
partition P = {a = t0 < t1 < ... < tn = b} of [a, b] and
approximate the length of α([a, b]) with the sum

n∑
i=1

|α(ti )− α(ti−1)|.

It can be shown that if |P| = max1≤i≤n{|ti − ti−1|}, then

lim
|P|→0

=

∫ b

a
|α′(t)|dt,

which suggests the definition of
∫ b
a |α

′(t)|dt as the length of α
from a to b.



Parametrization by Arc Length

We say that α is a regular curve if α′(t) 6= 0 for each t ∈ I , i.e., if
the tangent line of α is well-defined at each of its points.
For any t0 ∈ I , we can define the arc length function from t0, given
by

S(t) =

∫ t

t0

|α′(u)|du.

We say that α is parametrized by arc length (p.b.a.l) if |α′(t)| = 1
for each t ∈ I , so that S(t) = t − t0. . Since S ′(t) = |α′(t)|, the
inverse function theorem tells us that if α is regular, then S is
increasing and open. Hence if J = S(I ), then S : I → J is a
diffeomorphism between open intervals.



Let β : J → R3 be the reparametrization of α given by
β = α ◦ S−1. It follows that

β′(s) = α′(S−1(s))(S−1)′(s) =
α′(S−1(s))

|α′(S−1(s))|
,

so that |β′(s)| = 1 for each s ∈ J. Therefore, any regular curve
admits a reparametrization by arc length.
Let α : I → R2 be a curve p.b.a.l, and let the tangent unit vector
α′(s) be denoted by T (s). Let the normal vector of α at s be given
by N(s) = JT (s), where J is the linear transformation
corresponding to a 90-degree counter-clockwise rotation. From the
equalities |T (s)|2 = |N(s)|2 = 1 and 〈T (s),N(s)〉 = 0, we can
conclude, by taking derivatives, that

〈T ′(s),T (s)〉 = 〈N ′(s),N(s)〉 = 〈T ′(s),N(s)〉+ 〈T (s),N ′(s)〉 = 0.



Observe that T ′(s) has the same direction as N(s), so that, for
each s ∈ I , we have that T ′(s) = k(s)N(s) for some k(s) ∈ R.
The number k(s) is called the curvature of α at s.
We have constructed, for each s ∈ I , a positively-oriented
orthonormal basis {T (s),N(s)} for R2. This pair of vectors is
called the oriented Frenet dihedron of α at s. The equations

T ′(s) = k(s)N(s) and N ′(s) = −k(s)T (s)

are called the Frenet equations of the curve α.

Figure 2: The evolution of the Frenet dihedrons unveil the geometrical
features of the curve



Fundamental Theorem of the Local Theory of Plane Curves

Let k0 : I → R be a differentiable function defined on an open
interval I ⊂ R. Then, there exists a plane curve α : I → R2 p.b.a.l.
such that kα(s) = k0(s) for every s ∈ I , where kα is the curvature
function of α. Moreover, if β : I → R2 is another plane curve
p.b.a.l. with kβ(s) = k0(s), for all s ∈ I , then there exists a direct
rigid motion M : R2 → R2 such that β = M ◦ α.



Space curves

We can, as we did for plane curves, associate a positively oriented,
orthonormal basis of R3 to each point of a space curve.
Let α : I → R3 be a curve p.b.a.l and T (s) = α′(s). Since
|T (s)|2 = 1 for each s ∈ I , it follows that 〈T ′(s),T (s)〉 = 0 for
each s ∈ I . We now define the curvature k of α at s by
k(s) = |T ′(s)|. Unlike with plane curves, the definition forces the
curvature to be non-negative at each s ∈ I .
Assume that k is strictly positive. Then one may consider the
vector

N(s) =
T ′(s)

|T ′(s)|
=

1
k(s)

T ′(s).

From previous reasoning, we see that 〈T (s),N(s)〉 = 0 for each
s ∈ I . Hence, in order to construct our orthonormal basis, it suffices
to define a third vector B(s) = T (s)× N(s), where × denotes the
vector product of Euclidean three-space. We call this vector the
binormal vector of the curve α at s.



Torsion

From the definition of B , we can conclude that

B(s) = T ′(s)× N(s) + T (s)× N ′(s) = T (s)× N ′(s)

since T ′(s) and N(s) have the same direction. Hence

〈B ′(s),T (s)〉 = det(T (s),N ′(s),T (s)) = 0.

Furthermore, |B(s)|2 = 1, so that 〈B ′(s),B(s)〉 = 0. This tells us
that B ′(s) has no components in the directions of T (s) or B(s). It
follows that

B ′(s) = τ(s)N(s),

with τ(s) ∈ R for each s ∈ I . The number τ(s) is called the torsion
of the curve α at s.



Finally, we study the derivative of the normal vector: From the
equalities |N(s)|2 = 1, 〈N(s),T (s)〉 = 0, and 〈N(s),B(s)〉 = 0, it
follows that

〈N ′(s),N(s)〉 = 0,
〈N ′(s),T (s)〉 = −〈N(s),T ′(s)〉 = −k(s),
〈N ′(s),B(s)〉 = −〈N(s),B ′(s)〉 = −τ(s),

so that
N ′(s) = −k(s)T (s)− τ(s)B(s)

for each s ∈ I . The three equations we have deduced,

T ′(s) = k(s)N(s),

N ′(s) = −k(s)T (s)− τ(s)B(s),
B ′(s) = τ(s)N(s)

are the Serret-Frenet equations of the curve α.



Fundamental Theorem of Local Theory of Space Curves
Let I ⊂ R be an open interval and let k0, τ0 : I → R be two
differentiable functions with k0(s) > 0, for each s ∈ I . Then there
exists a curve α : I → R3 p.b.a.l. such that kα(s) = k0(s) and
τα(s) = τ0(s) for each s ∈ I , where kα and τα are the curvature
and torsion functions of α. Furthermore, α is unique up to a direct
rigid motion of Euclidean space R3.

Figure 3: The triplet of vectors associated with each point s of the curve
is called the Frenet trihedron of α at s.
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